热门推荐








导数奇函数说明什么
问题描述
- 精选答案
-
证明:设函数f(x)为偶函数,且f(x)可导,g(x)=f'(x)。
那么根据偶函数性质可得,f(-x)=f(x)。分别对f(-x)=f(x)等式两边求导可得,f'(-x)(-x)'=f'(x),即f'(-x)(-1)=f'(x),f'(-x)=-f'(x),即g(-x)=-g(x),那么g(x)为奇函数。扩展资料:
1、导数的四则运算法则(1)(u±v)'=u'±v'(2)(u*v)'=u'*v+u*v'(3)(u/v)'=(u'*v-u*v')/v^22、复合函数的求导法则复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。
3、导数的意义函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
4、奇函数和偶函数性质(1)两个奇函数相加所得的和或相减所得的差为奇函数。
(2)一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。
(3)奇函数图象关于原点(0,0)对称。
(4)奇函数图象关于y轴对称
- 其他回答
-
可导的奇函数的导函数是偶函数;同样,可导的偶函数的导函数是奇函数.f(-x)(-1)=f(x)此处用复合函数求导法则因为[f(-x)]=f(-x)(-x),而[f(x)]=f(x)于是f(-x)=f(x)两边求导得f(-x)(-x)=f(x)。
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。
偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒导其奇偶性。验证奇偶性的'前提要求函数的定义域必须关于原点对称。
猜你喜欢内容
-
耿直讨人嫌的上一句是啥
耿直讨人嫌的上一句是啥回答数有3条优质答案参考
-
“顺情说好话,耿直讨人嫌”什么意思
“顺情说好话,耿直讨人嫌”什么意思回答数有3条优质答案参考
-
顺情说好话耿直讨人嫌上一句
顺情说好话耿直讨人嫌上一句回答数有3条优质答案参考
-
绕了一圈又绕回来了用什么成语形容
绕了一圈又绕回来了用什么成语形容回答数有3条优质答案参考
-
研究生入编薪级标准
研究生入编薪级标准回答数有3条优质答案参考
-
一轮当空是什么意思
一轮当空是什么意思回答数有3条优质答案参考
-
秋天在草地上,小草后面怎么写
秋天在草地上,小草后面怎么写回答数有3条优质答案参考
-
源于历史的四字成语
源于历史的四字成语回答数有3条优质答案参考
-
来源历史的成语
来源历史的成语回答数有3条优质答案参考
-
一什么枣空词语
一什么枣空词语回答数有3条优质答案参考