热门推荐








复合函数求导怎么算
问题描述
- 精选答案
-
复合函数求导的方法如下:总的公式f'[g(x)]=f'(g)×g'(x)比如说:求ln(x+2)的导函数[ln(x+2)]'=[1/(x+2)] 注:此时将(x+2)看成一个整体的未知数x' ×1注:1即为(x+2)的导数。
主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。复合函数证明方法如下:先证明个引理:f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)所以f(x)在点x0可导,且f'(x0)=H(x0)引理证毕。设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx)证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0则lim(Δx->0)α=0最终有dy/dx=(dy/du)*(du/dx)
猜你喜欢内容
-
耿直讨人嫌的上一句是啥
耿直讨人嫌的上一句是啥回答数有3条优质答案参考
-
“顺情说好话,耿直讨人嫌”什么意思
“顺情说好话,耿直讨人嫌”什么意思回答数有3条优质答案参考
-
顺情说好话耿直讨人嫌上一句
顺情说好话耿直讨人嫌上一句回答数有3条优质答案参考
-
绕了一圈又绕回来了用什么成语形容
绕了一圈又绕回来了用什么成语形容回答数有3条优质答案参考
-
研究生入编薪级标准
研究生入编薪级标准回答数有3条优质答案参考
-
一轮当空是什么意思
一轮当空是什么意思回答数有3条优质答案参考
-
秋天在草地上,小草后面怎么写
秋天在草地上,小草后面怎么写回答数有3条优质答案参考
-
源于历史的四字成语
源于历史的四字成语回答数有3条优质答案参考
-
来源历史的成语
来源历史的成语回答数有3条优质答案参考
-
一什么枣空词语
一什么枣空词语回答数有3条优质答案参考