全站数据
8 4 2 0 5 8 1

lnx的原函数怎么求

轻语说期货 | 教育先行,筑梦人生!         
问题更新日期:2024-04-28 09:58:16

问题描述

lnx的原函数怎么求希望能解答下
精选答案
最佳答案

∫lnxdx=(lnx-1)x+C。

C为积分常数。解答过程如下:求lnx的原函数就是对lnx进行不定积分。∫lnxdx=xlnx-∫xdlnx=xlnx-x+C=(lnx-1)x+C扩展资料:分部积分:(uv)'=u'v+uv'得:u'v=(uv)'-uv'两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式也可简写为:∫ v du = uv - ∫ u dv常用积分公式:1)∫0dx=c2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c4)∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c