全站数据
8 4 2 0 5 8 1

中学生抽象逻辑思维的例子

IT风口 | 教育先行,筑梦人生!         
问题更新日期:2024-07-10 22:45:04

问题描述

中学生抽象逻辑思维的例子,在线求解答
精选答案
最佳答案

抽象思维的例子1

美籍华人陈省身教授是当代举世闻名的数学家,他在北京大学的一次讲学中语惊四座:

人们常说,三角形内角和等于180度。但是,这是不对的!

大家愕然。怎么回事 三角形内角和是180度,这不是数学常识吗

接着,这位老教授对大家的疑问作了精辟的解说三角形内角和为180度不对,不是说这个事实不对,而是说这种看问题的方法不对,应当说三角形外角和是360度。

把眼光盯住内角,我们只能看到:

三角形内角和是180度;

四边形内角和是360度;

n边形内角和是(n-2)180度。

这就找到了一个计算内角和的公式。公式里出现了边数n。如果看外角呢

三角形的外角和是360度;

四边形的外角和是360度;

五边形的外角和是360度;

任意n边形外角和都是360度。

这就把多种情形用一个十分简单的结论概括起来。用一个与n无关的常数代替了与n有关的公式,找到了更一般的规律。

抽象思维感悟:

读罢陈省身的故事,我们想起数学家波莱尔的一段话:数学家的目的往往是寻求一般的解,他喜欢用几个一般的公式来解决许多特殊的问题。

抽象思维的例子2

一位农夫请了工程师、物理学家和数学家,让他们用最少的篱笆围出最大的面积。

工程师用篱笆围出一个圆,宣称这是最优设计。

物理学家说:将篱笆分解拉开,形成一条足够长的直线,当围起半个地球时,面积最大了。

数学家好好嘲笑了他们一番。他用很少的篱笆把自己围起来,然后说:我现在是在篱笆的外面。

抽象思维感悟:

工程师的设计是实用的、唯美的,不愧是最优设计。物理学家的思维具有奇特的想象力,篱笆可无限地分解拉开,似乎围成的面积已经是最大了。数学家是用很少的篱笆把自己围起来,然后说:我现在是在篱笆的外面。工程师和物理学家力图围出最大的面积,而数学家是先围出最小的面积。人们说,退一步海阔天空,而数学家何止是退一步,是反其道而行之。反其道是一种逆向思维的品质。

逆向思维是创造思维的组成部分。在我们面对山重水复之时,逆向思考常常使我们找到柳暗花明之路。数学教与学应使逆向思维成为学生应有的自觉意识和实践行为。

抽象思维的例子3

某日,老师想看看学生的智商如何,于是有了下面的对话。

老师问:树上有10只鸟,开枪打死1只,还剩几只

学生反问:您确定那只鸟真的被打死了吗

确定。

是无声手枪吗

不是。

枪声有多大

80~100分贝。

那就是说会震得耳朵疼

是。

老师已经不耐烦了,拜托,你告诉我还剩几只就行,OK

OK,树上的鸟有没有聋子

没有。

有没有关在笼子里的

没有。

边上还有没有其他的树 树上还有没有其他的鸟

没有。

算不算怀在肚子里的小鸟

不算。

打鸟的人眼有没有花 保证是10只

没有花,就10只。

老师已经满头是汗,且下课铃已响了,但学生还是追问。

有没有傻到不怕死的

都怕死。

会不会一枪打死2只

不会。

所有的鸟都可以自由活动吗

完全可以。

如果您的回答没有骗人,学生满怀信心地说,打死的鸟要是挂在树上没掉下来,那么就剩下1只;如果掉下来,就1只不剩。

抽象思维感悟:

读完上述故事,我们似乎也有晕倒的感觉。树上有几只鸟,本是一道趣味数学题。数学需要趣味,那怕这种趣味带点幼稚,答案不够周密。趣味数学是激发学生数学想象、数学情趣及思维火化的有效素材。趣味数学题一旦坐实,就失去了生机与活力。故事中的学生似乎有点走火入魔,这会不会与刻板的教学有关呢

如果开放题被肢解成一道道封闭题,就违背了开放的本意。数学需要开放,开放的目的是发散思维,开放的本质是思维。数学的教与学中需要开放,开放包括教学组织及整个设计,不可狭隘地理解为一道数学题,而是一个贯穿教学过程的主题,开放题只是载体与素材,开放应上升为一种思想。

诸如树上有几只鸟之类的话题,您也许别有一番高见,智者见智、趣者见趣,最后还是让我们读读下面两段文字:

甚至在数学上也是需要幻想的,甚至没有它就不可能发明微分。(列宁语)

没有大胆的猜想,就做不出伟大的发现。(牛顿语)