全站数据
8 4 2 0 5 8 1

方差的公式,我记得老师说过是两个!最好有例子

插画学习 | 教育先行,筑梦人生!         
问题更新日期:2024-06-05 19:00:15

问题描述

方差的公式,我记得老师说过是两个!最好有例子,在线求解答
精选答案
最佳答案

由方差的定义可以得到以下常用计算公式: D(X)=E(X^2)-[E(X)]^2 方差的几个重要性质(设一下各个方差均存在)。

(1)设c是常数,则D(c)=0。

(2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。

(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。

(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c. 例子:两人的5次测验成绩如下: X: 50,100,100,60,50 E(X )=72; Y: 73, 70, 75,72,70 E(Y )=72。

平均成绩相同,但X 不稳定,对平均值的偏离大。

方差描述随机变量对于数学期望的偏离程度。

单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里 是一个数。

推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”。

其他回答

方差的两种公式是D(X)=E(X^2)-[E(X)]^2,DX=EX^2-(EX)^2。

方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义