热门推荐








等比数列求和的三个推导方法
问题描述
- 精选答案
-
求和公式推导
(1)Sn=a1+a2+a3+...+an(公比为q)
(3)Sn-q*Sn=(1-q)Sn=a1-a(n+1)(4)a(n+1)=a1*q^n
(5)Sn=a1(1-q^n)/(1-q)(q≠1)性质
amxan=apxaq;
②在等比数列中,依次每 k项之和仍成等比数列;
③若m、n、q∈N,且m+n=2q,则 amxan=(aq)^2;
- 其他回答
-
第一种:作差法
Sn=a1+a2+a3+...+an(公比为q)
q*Sn=a1*q+a2*q+a3*q+...+an*q
=a2+a3+a4+...+a(n+1)
Sn-q*Sn=a1-a(n+1)
(1-q)Sn=a1-a1*q^n
Sn=(a1-a1*q^n)/(1-q)
Sn=(a1-an*q)/(1-q)
Sn=a1(1-q^n)/(1-q)
2、由等比数列定义
a2=a1*q
a3=a2*q
a(n-1)=a(n-2)*q
an=a(n-1)*q 共n-1个等式两边分别相加得
a2+a3+...+an=[a1+a2+...+a(n-1)]*q
即 Sn-a1=(Sn-an)*q,即(1-q)Sn=a1-an*q
当q≠1时,Sn=(a1-an*q)/(1-q) (n≥2)
当n=1时也成立.
当q=1时Sn=n*a1
所以Sn= n*a1(q=1) ;(a1-an*q)/(1-q) (q≠1)。
3、数学归纳法
证明:(1)当n=1时,左边=a1,右边=a1·q0=a1,等式成立;
(2)假设当n=k(k≥1,k∈N*)时,等式成立,即ak=a1qk-1;
当n=k+1时,ak+1=ak·q=a1qk=a1·q(k+1)-1;
这就是说,当n=k+1时,等式也成立;
由(1)(2)可以判断,等式对一切n∈N*都成立。
猜你喜欢内容
-
什么龟什么鼈的词语有哪些
什么龟什么鼈的词语有哪些回答数有1条优质答案参考
-
什么龟什么酒的词语有哪些
什么龟什么酒的词语有哪些回答数有1条优质答案参考
-
什么龟什么药的词语有哪些
什么龟什么药的词语有哪些回答数有1条优质答案参考
-
什么龟什么腋的词语有哪些
什么龟什么腋的词语有哪些回答数有1条优质答案参考
-
什么龟什么肠的词语有哪些
什么龟什么肠的词语有哪些回答数有1条优质答案参考
-
什么龟什么紫的词语有哪些
什么龟什么紫的词语有哪些回答数有1条优质答案参考
-
什么龟什么策的词语有哪些
什么龟什么策的词语有哪些回答数有1条优质答案参考
-
什么龟什么木的词语有哪些
什么龟什么木的词语有哪些回答数有1条优质答案参考
-
什么龙什么黻的词语有哪些
什么龙什么黻的词语有哪些回答数有1条优质答案参考
-
什么龙什么鹄的词语有哪些
什么龙什么鹄的词语有哪些回答数有1条优质答案参考