热门推荐








泰勒公式通项
问题描述
- 精选答案
-
泰勒公式是用于近似表示一个函数在某点附近的展开式。
泰勒公式的通项表达如下:泰勒级数通项(展开式):f(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)^2/2! + f'''(a)(x - a)^3/3! + ... + fⁿ(a)(x - a)^n! + ...其中:- f(x) 表示要近似的函数。- f(a) 表示在点a处的函数值。- f'(a) 表示在点a处的一阶导数值。- f''(a) 表示在点a处的二阶导数值。- f'''(a) 表示在点a处的三阶导数值。- fⁿ(a) 表示在点a处的n阶导数值。- x 是你想要在哪个点附近展开函数的值。- a 是展开点,即你希望展开的中心点。展开式中的每一项都是函数在a点处的导数值与(x - a)的幂的乘积,除以相应的阶乘。你可以根据需要选择多少项来近似函数,通常会根据精度要求来决定。泰勒公式的这个通项表达式允许你在不知道原始函数的具体形式的情况下,使用导数信息来进行函数的局部近似。
- 其他回答
-
泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!(x-x.)^2,+f'''(x.)/3!(x-x.)^3+……+f(n)(x.)!(x-x.)^n+Rn
其中Rn=f(n+1)(ξ)/(n+1)!(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。)
猜你喜欢内容
-
中专,大专在读上哪查学籍
中专,大专在读上哪查学籍回答数有3条优质答案参考
-
文言文《明史杨璟传》
文言文《明史杨璟传》回答数有3条优质答案参考
-
布雷斯特商学院硕士学位可信吗
布雷斯特商学院硕士学位可信吗回答数有3条优质答案参考
-
正常情况下在法国会承认我的布雷斯特商学院学位吗
正常情况下在法国会承认我的布雷斯特商学院学位吗回答数有3条优质答案参考
-
南召县八年级秋期抽考成绩
南召县八年级秋期抽考成绩回答数有3条优质答案参考
-
45岁改行考律师有前途么
45岁改行考律师有前途么回答数有3条优质答案参考
-
WORD邮件合并一页8个准考证怎么做
WORD邮件合并一页8个准考证怎么做回答数有3条优质答案参考
-
公务员连续两年不称职怎么处理
公务员连续两年不称职怎么处理回答数有3条优质答案参考
-
pdf准考证如何把两页变成一页
pdf准考证如何把两页变成一页回答数有3条优质答案参考
-
单县到砀山县物流
单县到砀山县物流回答数有3条优质答案参考